LITERATURE CITED

1. ""Engincering problems of mass transfer in pipe hydrodynamics,'" Uch, Zap. Bashk, Univ,, No, 67, 120~
144 (1974).

2, S. 8. Kutateladze, Near-Wall Turbulence [in Russian]|, Nauka, Novosibirsk (1973).

3. G. Taylor, ""The dispersion of matter in turbulent flow through a pipe,' Proc. R. Soc, Ser. A, 223, No.
1155, 447-468 (1954).

4, V. G. Levich, Physicochemical Hydrodynamics [in Russian], Fizmatgiz, Moscow (1959).

5, G. A, Aksel'rud, *'Diffusion from the surface of a sphere,'" Zh. Fiz. Khim,, 27, No, 10, 1446-1464 (1953).

6. B. A. Kader and A. M. Yaglom, ""Universal law of turbulence, heat and mass transfer from the wall for
large Re and Pe numbers,'" Dokl, Akad, Nauk SSSR, Ser, Mat. Fiz., 190, No. 1, 65-69 (1970).

MASS TRANSFER FROM A MOVING BUBBLE
DURING A SLOW CHEMICAL REACTION

Yu. I. Babenko _ UDC 536.24.01

A previously proposed method for solving inhomogeneous problems in the theory of heat and
mass transfer is refined. As an illustration, the stationary mass transfer from a moving bub-
ble during a slow chemical reaction of first or second order is examined.

We shall examine the problem

| 2 )
L _PC @ 1), 0<t<o, 0<T< 00, (M
ot og

Cleeo = Cs (1) Cl=w = 0; Clo =0, (2)

which describes mass transfer in a semiinfinite region under the action of a source. It is necessary to find the
quantity qg = (8C/8%) g= g, which determines the mass flux through the boundary of the region.

As in [1], we shall represent Eq. (1) in the form

where the fractional differentiation operators are defined by the expressions
T
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The concentration gradient sought at the boundary is obtained as follows [1]. We apply the operator in-
verse to D — 8/8£ onthe left side of Eq, (3)., For (D —8/8¢) !, we previously found an expression in the form of
an infinite series. It turns out that the inverse operator can also be written in the form
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The following expression, defined in [2], enters into the operator in the integrand:
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Its basic properties are also given in [2] and the usefulness of the notation adopted is explained.

By direct verification, using the properties of the operation (5), it can be shown that (4) is indeed the in-
verse operator relative to D2 —3/5¢,

Operating on Eq. (3) by operator (5), writing the expression obtained for £ = 0 and for convenience re-
writing the integration variable as 1 — §, we find the gradient sought at the boundary in the form

— g, =D"*C,— f P06 1 de (6)
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Expression (6) does not require specifying a concentration field to find gg.

We shall examine one of the basic problems in the the ss transfer, describing in the quasista-
tionary approximation the process of mass transfer from a spherical bubble moving with a constant velocity U
in a large fluid volume, The substance 1, whose cory@entration on the surface of the sphere is assumed to be
constant and equal to A, diffuses into the surrounding medium, containing substance 2, which has an initial
concentration B, not penetrating through the phase separation boundary. Substances 1 and 2 enter into asecond-
order chemical reaction,

The transfer equations for substanee 1 and the system of conditions are written in the form

0 28 L9 pAC+RCC =0, R< i< w0, 0O, )
or PR
Chor =4, Chen=0, | =0, Clow=B Cpus<oo,
af r=R
C'le=g<00. (8)

The reason that we do not present the transfer equation for substance 2 is explained in what follows.
The velocity field for Re > 80 is well described by a potential flow [3] (at least up to the separation point
of the boundary layer)
R? . RPN
uT:_"U(\l'—,,—s) cos 0, ue_U(l+2ra) sin 0. (9)

It is necessary to determine the mass flow through the bubble surface.

Using the generally accepted boundary layer approximation, we shall neglect the diffusion transport in
the direction of flow, the contribution to radial transport due to the term (2/r)dC/9r. In expressions (9), we
shall retain only the first terms in the expansion in powers of r — R, setting

u,z_ﬁ(’—Ri@’_ Ucos8, up— %- U sin®. (10)

Let us introduce the following dimensionless variables:
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Then, after a well-known substitution,
& = §sin20, r:%——?}—— c056+—%— coé36, (12)

the problem (7), (8), and (10) is written in the form
do 0% A

g 0o 00’ =0, 0<<E< oo, 0< v <8/, 3
o e sme SE<e (13)
A do’
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0 B 0 o (14)
o, _,=0 o 1, A =2u/Pe.

=0 —

Here 0 is expressed in terms of 7 with the help of Egs. (12):
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o=0,+ Ao, +Mo,+ ..., o =0,+he FNo,+ ...,
gs = qo -+ Agy + Mg, + ... (15)

In what follows, we will limit ourselves to determining the mass flux for the case of a slow reaction,
when terms containing higher powers of x, beginning with the second, can be neglected, Substituting (15) into
(13) and (14) and equating the expressions for like powers of A, we find
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For a4, we have the problem
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Oe g =0, o, =0, af_,=0.

It is evident that in order to find o it is not necessary to solve the diffusion equation for component 2, which
would be necessary for determining op, 0 = 2,

Calculating ¢, from (17) with the help of the generally used methods is a very cumbersome operation.
However, with the help of Eq. (6), it is easy to complete the solution. For q;, we have the expresion
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Here, # is a function of z, defined by Eq. (12), where it is necessary to carry out the formal substitution
0~ &, 7Tz,

Changing the order of integration and noting that
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we obtain
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0

We find the total flux of matter through the bubble surface (integrating expressions (16) and (18) along
the surface of the sphere taking into account dz = (2/3) sin® ¢ds), resulting from Egs. (12) in the form
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Here Sh= F/2nRDA, F = — 2nR¥D j (9C/3r),— sin 0d6.
0
We determined numerically the values J (7r/12) ~ 0.56; J(27/3) = 0.70; J (3n/4) = 0.88. For a separa-

tionless flow (¢ = w), the integral, after the substitution tg ¢ /2 = z and subsequent elementary substitutions,
can be computed exactly:

J () =

162 1 1 V3+1
—— - —=— — ] - ~ 1.06.
3V3 [ V3 2V3 Il2(1/3—1)]

For » = 0, we obtain from (19) the well-known expression in {[4], p. 69).

Equation (19) is useful for practical calculationg, if A = 2%/Pe = (d/2U)/(1/Bk) = treg/thiem < 0.3.
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For typical organic synthesis processes, where bubbling is used, treg & 0,02 sec and the condition of ap-
plicability is satisfied for tyjem > 0.03 sec.

From an analysis of the problem (13), it follows that for slow reactions, when only the linear term in the
expansion with respect to A is taken into account, Eq. (19) has the same form for a first-order reaction, It is
only necessary to carry out the formal substitution for the quantity x, setting Bk — k' and » —~ k'd¥/42.

NOTATION

Here a is a constant; A, concentration of substance 1 on the bubble surface; B, concentration of sub-
stance 2 far away from the bubble; C, concentration of substance 1; C!, concentration of substance 2; DY, sym-~
bol for fractional differentiation; d, diameter of the bubble; F, total mass flux through the bubble surface; f,
arbitrary function; I, J, functions of the angles of separation of the flow, entering into the solution; k, rate con-
stant of the second-order reaction; k', rate constant of the first-order reaction; @, source function of the sub-
stance; qg, gradient of the dimensionless concentration at the boundary of the region; R, bubble radius; r,
radial coordinate; fchem, characteristic time of the chemical reaction; tyeg, characteristic time for regener-
ating the bubble surface; up, ug, radial and angular components of the fluid velocity; z, an integration variable;
o, B, constants; 6, variable related linearly to the coordinate; n, integration variable; 6,4, polar coordinates;
%, dimensionless rate constant of the chemical reaction; o, o', dimensionless concentrations of components 1
and 2; &, 7, dimensionless coordinates; ¢, angle of separation of the flow; Pe, Peclet number; Sh, Sherwood
number; Re, Reynolds number. Indices: s, surface.
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DETERMINATION OF COEFFICIENT OF
EXTERNAL MASS TRANSFER IN DRYING
PROCESSES

E. N. Prozorov UDC 66.015,23,936.,8

A method is proposed for determining the coefficient of external mass transfer from experi-
mental curves of drying kinetics in porous materials., A comparison of results obtained by this
method and by the method of moisture content measurements indicates a close agreement.

Important aspects of studying the mass transfer in systems with a solid phase are gathering of experi-
mental data on the mass transfer coefficients, and related with it, development of methods of determining their
dependence on the concentration of fluid substance in the porous body. The coefficient of external mass trans-
fer, referred to the motive force in the solid phase, determines the intensity of transfer of the bounded sub~
stance from the surface of a capillary-porous body to the ambient medium during a drying process, and can be
calculated from the relation

jzﬁ,f(us_ue)? (1)
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